全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2014 

Chip-firing and energy minimization on M-matrices

Full-Text   Cite this paper   Add to My Lib

Abstract:

We consider chip-firing dynamics defined by arbitrary M-matrices. M-matrices generalize graph Laplacians and were shown by Gabrielov to yield avalanche finite systems. Building on the work of Baker and Shokrieh, we extend the concept of energy minimizing chip configurations. Given an M-matrix, we show that there exists a unique energy minimizing configuration in each equivalence class defined by the matrix. We define the class of $z$-superstable configurations which satisfy a strictly stronger stability requirement than superstable configurations (equivalently $G$-parking functions or reduced divisors). We prove that for any M-matrix, the $z$-superstable configurations coincide with the energy minimizing configurations. Moreover, we prove that the $z$-superstable configurations are in simple duality with critical configurations. Thus for all avalanche-finite systems (including all directed graphs with a global sink) there exist unique critical, energy minimizing and $z$-superstable configurations. The critical configurations are in simple duality with energy minimizers which coincide with $z$-superstable configurations.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133