全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2014 

Geometric generators for braid-like groups

Full-Text   Cite this paper   Add to My Lib

Abstract:

We study the problem of finding generators for the fundamental group G of a space of the following sort: one removes a family of complex hyperplanes from n dimensional complex vector space, or n dimensional complex hyperbolic space, or the Hermitian symmetric space for O(2,n), and then takes the quotient by a discrete group $P{\Gamma}$. The classical example is the braid group, but there are many similar "braid-like" groups that arise in topology and algebraic geometry. Our main result is that if $P{\Gamma}$ contains reflections in the hyperplanes nearest the basepoint, and these reflections satisfy a certain property, then G is generated by the analogues of the generators of the classical braid group. We apply this to obtain generators for G in a particular intricate example in complex hyperbolic space of dimension 13. The interest in this example comes from a conjectured relationship between this braid-like group and the monster simple group M, that gives geometric meaning to the generators and relations in the Conway-Simons presentation of $(M \times M):2$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133