全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2014 

Fourier transform for quantum $D$-modules via the punctured torus mapping class group

Full-Text   Cite this paper   Add to My Lib

Abstract:

We construct a certain cross product of two copies of the braided dual $\tilde H$ of a quasitriangular Hopf algebra $H$, which we call the elliptic double $E_H$, and which we use to construct representations of the punctured elliptic braid group extending the well-known representations of the planar braid group attached to $H$. We show that the elliptic double is the universal source of such representations. We recover the representations of the punctured torus braid group obtained in arXiv:0805.2766, and hence construct a homomorphism to the Heisenberg double $D_H$, which is an isomorphism if $H$ is factorizable. The universal property of $E_H$ endows it with an action by algebra automorphisms of the mapping class group $\widetilde{SL_2(\mathbb{Z})}$ of the punctured torus. One such automorphism we call the quantum Fourier transform; we show that when $H=U_q(\mathfrak{g})$, the quantum Fourier transform degenerates to the classical Fourier transform on $D(\mathfrak{g})$ as $q\to 1$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133