全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2014 

Constructing large k-systems on Surfaces

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $S_{g}$ denote the genus $g$ closed orientable surface. For $k\in \mathbb{N}$, a $k$-system is a collection of pairwise non-homotopic simple closed curves such that no two intersect more than $k$ times. Juvan-Malni\v{c}-Mohar \cite{Ju-Mal-Mo} showed that there exists a $k$-system on $S_{g}$ whose size is on the order of $g^{k/4}$. For each $k\geq 2$, We construct a $k$-system on $S_{g}$ with on the order of $g^{\lfloor (k+1)/2 \rfloor +1}$ elements. The $k$-systems we construct behave well with respect to subsurface inclusion, analogously to how a pants decomposition contains pants decompositions of lower complexity subsurfaces.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133