全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2014 

The exponentiated Hencky-logarithmic strain energy. Part I: Constitutive issues and rank-one convexity

Full-Text   Cite this paper   Add to My Lib

Abstract:

We investigate a family of isotropic volumetric-isochoric decoupled strain energies $$ F\mapsto W_{_{\rm eH}}(F):=\widehat{W}_{_{\rm eH}}(U):=\left\{\begin{array}{lll} \frac{\mu}{k}\,e^{k\,\|{\rm dev}_n\log {U}\|^2}+\frac{\kappa}{{2\, {\widehat{k}}}}\,e^{\widehat{k}\,[{ \rm tr}(\log U)]^2}&\text{if}& { \rm det} F>0,\\ +\infty &\text{if} &{ \rm det} F\leq 0, \end{array}\right.\quad $$ based on the Hencky-logarithmic (true, natural) strain tensor $\log U$, where $\mu>0$ is the infinitesimal shear modulus, $\kappa=\frac{2\mu+3\lambda}{3}>0$ is the infinitesimal bulk modulus with $\lambda$ the first Lam\'{e} constant, $k,\widehat{k}$ are dimensionless parameters, $F=\nabla \varphi$ is the gradient of deformation, $U=\sqrt{F^T F}$ is the right stretch tensor and ${\rm dev}_n\log {U} =\log {U}-\frac{1}{n} {\rm tr}(\log {U})\cdot 1\!\!1$ is the deviatoric part of the strain tensor $\log U$. For small elastic strains, $W_{_{\rm eH}}$ approximates the classical quadratic Hencky strain energy $$ F\mapsto W_{_{\rm H}}(F):=\widehat{W}_{_{\rm H}}(U):={\mu}\,\|{\rm dev}_n\log U\|^2+\frac{\kappa}{2}\,[{\rm tr}(\log U)]^2, $$ which is not everywhere rank-one convex. In plane elastostatics, i.e. $n=2$, we prove the everywhere rank-one convexity of the proposed family $W_{_{\rm eH}}$, for $k\geq \frac{1}{4}$ and $\widehat{k}\geq \frac{1}{8}$. Moreover, we show that the corresponding Cauchy (true)-stress-true-strain relation is invertible for $n=2,3$ and we show the monotonicity of the Cauchy (true) stress tensor as a function of the true strain tensor in a domain of bounded distortions. We also prove that the rank-one convexity of the energies belonging to the family $W_{_{\rm eH}}$ is not preserved in dimension $n=3$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133