全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2014 

The Vlasov-Poisson-Boltzmann system for the whole range of cutoff soft potentials

DOI: 10.1007/s11425-013-4712-z

Full-Text   Cite this paper   Add to My Lib

Abstract:

The dynamics of dilute electrons can be modeled by the fundamental one-species Vlasov-Poisson-Boltzmann system which describes mutual interactions of the electrons through collisions in the self-consistent electrostatic field. For cutoff intermolecular interactions, although there are some progress on the construction of global smooth solutions to its Cauchy problem near Maxwellians recently, the problem for the case of very soft potentials remains unsolved. By introducing a new time-velocity weighted energy method and based on some new optimal temporal decay estimates on the solution itself and some of its derivatives with respect to both the spatial and the velocity variables, it is shown in this manuscript that the Cauchy problem of the one-species Vlasov-Poisson-Boltzmann system for all cutoff soft potentials does exist a unique global smooth solution for general initial perturbation which is unnecessary to satisfy the neutral condition imposed in [13] for the case of cutoff moderately soft potentials but is assumed to be small in certain weighted Sobolev spaces. Our approach applies also to the case of cutoff hard potentials and thus provides a satisfactory global well-posedness theory to the one-species Vlasov-Poisson-Boltzmann system near Maxwellians for the whole range of cutoff intermolecular interactions in the perturbative framework.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133