全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2011 

Linear slices of the quasifuchsian space of punctured tori

DOI: 10.1090/S1088-4173-2012-00237-8

Full-Text   Cite this paper   Add to My Lib

Abstract:

After fixing a marking (V, W) of a quasifuchsian punctured torus group G, the complex length l_V and the complex twist tau_V,W parameters define a holomorphic embedding of the quasifuchsian space QF of punctured tori into C^2. It is called the complex Fenchel-Nielsen coordinates of QF. For a complex number c, let Q_gamma,c be the affine subspace of C^2 defined by the linear equation l_V=c. Then we can consider the linear slice L of QF by QF \cap Q_gamma,c which is a holomorphic slice of QF. For any positive real value c, L always contains the so called Bers-Maskit slice BM_gamma,c. In this paper we show that if c is sufficiently small, then L coincides with BM_gamma,c whereas L has other components besides BM_gamma,c when c is sufficiently large. We also observe the scaling property of L.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133