|
Mathematics 2011
Topologies on $X$ as points in $2^{\mathcal{P}(X)}$Abstract: A topology on a nonempty set $X$ specifies a natural subset of $\mathcal{P}(X)$. By identifying $\mathcal{P}(\mathcal{P}(X))$ with the totally disconnected compact Hausdorff space $2^{\mathcal{P}(X)}$, the lattice $Top(X)$ of all topologies on $X$ is a natural subspace therein. We investigate topological properties of $Top(X)$ and give sufficient model-theoretic conditions for a general subspace of $2^{\mathcal{P}(X)}$ to be compact.
|