全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2011 

Free Resolutions and Sparse Determinantal Ideals

Full-Text   Cite this paper   Add to My Lib

Abstract:

A sparse generic matrix is a matrix whose entries are distinct variables and zeros. Such matrices were studied by Giusti and Merle who computed some invariants of their ideals of maximal minors. In this paper we extend these results by computing a minimal free resolution for all such sparse determinantal ideals. We do so by introducing a technique for pruning minimal free resolutions when a subset of the variables is set to zero. Our technique correctly computes a minimal free resolution in two cases of interest: resolutions of monomial ideals, and ideals resolved by the Eagon-Northcott Complex. As a consequence we can show that sparse determinantal ideals have a linear resolution over the integers, and that the projective dimension depends only on the number of columns of the matrix which are identically zero. Finally, we show that all such ideals have the property that regardless of the term order chosen, the Betti numbers of the ideal and its initial ideal are the same. In particular the nonzero generators of these ideals form a universal Gr\"obner basis.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133