全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2010 

Contact structures of arbitrary codimension and idempotents in the Heisenberg algebra

Full-Text   Cite this paper   Add to My Lib

Abstract:

A contact manifold is a manifold equipped with a distribution of codimension one that satisfies a `maximal non-integrability' condition. A standard example of a contact structure is a strictly pseudoconvex CR manifold, and operators of analytic interest are the tangential Cauchy-Riemann operator and the Szego projector onto its kernel. The Heisenberg calculus is the natural pseudodifferential calculus developed originally for the analysis of these operators. We introduce a `non-integrability' condition for a distribution of arbitrary codimension that directly generalizes the definition of a contact structure. We call such distributions polycontact structures. We prove that the polycontact condition is equivalent to the existence of generalized Szego projections in the Heisenberg calculus, and explore geometrically interesting examples of polycontact structures.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133