全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2010 

Weighted inequalities for multivariable dyadic paraproducs

Full-Text   Cite this paper   Add to My Lib

Abstract:

Using Wilson's Haar basis in $\R^n$, which is different than the usual tensor product Haar functions, we define its associated dyadic paraproduct in $\R^n$. We can then extend "trivially" Beznosova's Bellman function proof of the linear bound in $L^2(w)$ with respect to $[w]_{A_2}$ for the 1-dimensional dyadic paraproduct. Here trivial means that each piece of the argument that had a Bellman function proof has an $n$-dimensional counterpart that holds with the same Bellman function. The lemma that allows for this painless extension we call the good Bellman function Lemma. Furthermore the argument allows to obtain dimensionless bounds in the anisotropic case.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133