全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2010 

A refined modular approach to the Diophantine equation $x^2+y^{2n}=z^3$

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $n$ be a positive integer and consider the Diophantine equation of generalized Fermat type $x^2+y^{2n}=z^3$ in nonzero coprime integer unknowns $x,y,z$. Using methods of modular forms and Galois representations for approaching Diophantine equations, we show that for $n \in \{5, 31\}$ there are no solutions to this equation. Combining this with previously known results, this allows a complete description of all solutions to the Diophantine equation above for $n \leq 10^7$. Finally, we show that there are also no solutions for $n\equiv -1 \pmod{6}$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133