全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2006 

Geometry of vector bundle extensions and applications to a generalised theta divisor

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let E and F be vector bundles over a complex projective smooth curve X, and suppose that 0 -> E -> W -> F -> 0 is a nontrivial extension. Let G be a subbundle of F, and D an effective divisor on X. We give a criterion for the subsheaf G(-D) \subset F to lift to W, in terms of the geometry of a scroll in the extension space \PP H^1 (X, Hom(F, E)). We use this criterion to describe the tangent cone to the generalised theta divisor on the moduli space of semistable bundles of rank r and slope g-1 over X, at a stable point. This gives a generalisation of a case of the Riemann-Kempf singularity theorem for line bundles over X. In the same vein, we generalise the geometric Riemann-Roch theorem to vector bundles of slope g-1 and arbitrary rank.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133