全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2006 

Non-backtracking random walks mix faster

DOI: 10.1142/S0219199707002551

Full-Text   Cite this paper   Add to My Lib

Abstract:

We compute the mixing rate of a non-backtracking random walk on a regular expander. Using some properties of Chebyshev polynomials of the second kind, we show that this rate may be up to twice as fast as the mixing rate of the simple random walk. The closer the expander is to a Ramanujan graph, the higher the ratio between the above two mixing rates is. As an application, we show that if $G$ is a high-girth regular expander on $n$ vertices, then a typical non-backtracking random walk of length $n$ on $G$ does not visit a vertex more than $(1+o(1))\frac{\log n}{\log\log n}$ times, and this result is tight. In this sense, the multi-set of visited vertices is analogous to the result of throwing $n$ balls to $n$ bins uniformly, in contrast to the simple random walk on $G$, which almost surely visits some vertex $\Omega(\log n)$ times.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133