全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2006 

Diophantine Definability and Decidability in the Extensions of Degree 2 of Totally Real Fields

Full-Text   Cite this paper   Add to My Lib

Abstract:

We investigate Diophantine definability and decidability over some subrings of algebraic numbers contained in quadratic extensions of totally real algebraic extensions of $\mathbb Q$. Among other results we prove the following. The big subring definability and undecidability results previously shown by the author to hold over totally complex extensions of degree 2 of totally real number fields, are shown to hold for {\it all} extensions of degree 2 of totally real number fields. The definability and undecidability results for integral closures of ``small'' and ``big'' subrings of number fields in the infinite algebraic extensions of $\mathbb Q$, previously shown by the author to hold for totally real fields, are extended to a large class of extensions of degree 2 of totally real fields. This class includes infinite cyclotomics and abelian extensions with finitely many ramified rational primes.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133