全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2006 

On the growth of powers of operators with spectrum contained in Cantor sets

Full-Text   Cite this paper   Add to My Lib

Abstract:

For $\xi \in \big(0, {1/2} \big)$, we denote by $E_{\xi}$ the perfect symmetric set associated to $\xi$, that is $$ E_{\xi} = \Big\{\exp \big(2i \pi (1-\xi) \dsp \sum_{n = 1}^{+\infty} \epsilon_{n} \xi^{n-1} \big) : \epsilon_{n} = 0 \textrm{or} 1 \quad (n \geq 1) \Big\}. $$ Let $s$ be a nonnegative real number, and $T$ be an invertible bounded operator on a Banach space with spectrum included in $E_{\xi}$. We show that if \begin{eqnarray*} & & \big\| T^{n} \big\| = O \big(n^{s} \big), n \to +\infty & \textrm{and} & \big\| T^{-n} \big\| = O \big(e^{n^{\beta}} \big), n \to +\infty \textrm{for some} \beta < \frac{\log{\frac{1}{\xi}} - \log{2}}{2\log{\frac{1}{\xi}} - \log{2}}, \end{eqnarray*} then for every $\e > 0$, $T$ satisfies the stronger property $$ \big\| T^{-n} \big\| = O \big(n^{s+{1/2}+\e} \big), n \to +\infty. $$ This result is a particular case of a more general result concerning operators with spectrum satisfying some geometrical conditions.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133