全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2006 

A geometric problem and the Hopf Lemma. II

Full-Text   Cite this paper   Add to My Lib

Abstract:

A classical result of A.D. Alexandrov states that a connected compact smooth $n-$dimensional manifold without boundary, embedded in $\Bbb R^{n+1}$, and such that its mean curvature is constant, is a sphere. Here we study the problem of symmetry of $M$ in a hyperplane $X_{n+1}=$constant in case $M$ satisfies: for any two points $(X', X_{n+1})$, $(X', \hat X_{n+1})$ on $M$, with $X_{n+1}>\hat X_{n+1}$, the mean curvature at the first is not greater than that at the second. Symmetry need not always hold, but in this paper, we establish it under some additional conditions. Some variations of the Hopf Lemma are also presented. Several open problems are described. Part I dealt with corresponding one dimensional problems.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133