|
Mathematics 2006
Degenerate elliptic operators: capacity, flux and separationAbstract: Let $S=\{S_t\}_{t\geq0}$ be the semigroup generated on $L_2(\Ri^d)$ by a self-adjoint, second-order, divergence-form, elliptic operator $H$ with Lipschitz continuous coefficients. Further let $\Omega$ be an open subset of $\Ri^d$ with Lipschitz continuous boundary $\partial\Omega$. We prove that $S$ leaves $L_2(\Omega)$ invariant if, and only if, the capacity of the boundary with respect to $H$ is zero or if, and only if, the energy flux across the boundary is zero. The global result is based on an analogous local result.
|