全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2005 

Automorphisms of the semigroup of endomorphisms of free associative algebras

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $A=A(x_{1},...,x_{n})$ be a free associative algebra in $\mathcal{A}$ freely generated over $K$ by a set $X=\{x_{1},...,x_{n}\}$, $End A$ be the semigroup of endomorphisms of $A$, and $Aut End A$ be the group of automorphisms of the semigroup $End A$. We investigate the structure of the groups $Aut End A$ and $Aut \mathcal{A}^{\circ}$, where $\mathcal{A}^{\circ}$ is the category of finitely generated free algebras from $\mathcal{A}$. We prove that the group $Aut End A$ is generated by semi-inner and mirror automorphisms of $End F$ and the group $Aut \mathcal{A}^{\circ}$ is generated by semi-inner and mirror automorphisms of the category $\mathcal{A}^{\circ}$. This result solves an open Problem formulated in \cite{22}

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133