全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2005 

Reduced Gutzwiller formula with symmetry: case of a Lie group

Full-Text   Cite this paper   Add to My Lib

Abstract:

We consider a classical Hamiltonian $H$ on $\mathbb{R}^{2d}$, invariant by a Lie group of symmetry $G$, whose Weyl quantization $\hat{H}$ is a selfadjoint operator on $L^2(\mathbb{R}^d)$. If $\chi$ is an irreducible character of $G$, we investigate the spectrum of its restriction $\hat{H}\_{\chi}$ to the symmetry subspace $L^2\_{\chi}(\mathbb{R}^d)$ of $L^2(\mathbb{R}^d)$ coming from the decomposition of Peter-Weyl. We give semi-classical Weyl asymptotics for the eigenvalues counting function of $\hat{H}\_{\chi}$ in an interval of $\mathbb{R}$, and interpret it geometrically in terms of dynamics in the reduced space $\mathbb{R}^{2d}/G$. Besides, oscillations of the spectral density of $\hat{H}\_{\chi}$ are described by a Gutzwiller trace formula involving periodic orbits of the reduced space, corresponding to quasi-periodic orbits of $\mathbb{R}^{2d}$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133