|
Mathematics 2005
Extra-large metricsAbstract: An extra large metric is a spherical cone metric with all cone angles greater than 2 pi and every closed geodesic longer than 2pi. We show that every two-dimensional extra large metric can be triangulated with vertices at cone points only. The argument implies the same result for Euclidean and hyperbolic cone metrics, and can be modified to show a similar result for higher-dimensional extra-large metrics. The extra-large hypothesis is necessary.
|