全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2005 

Global Units modulo Circular Units : descent without Iwasawa's Main Conjecture

Full-Text   Cite this paper   Add to My Lib

Abstract:

Iwasawa's classical asymptotical formula relates the orders of the $p$-parts $X_n$ of the ideal class groups along a $\ZM_p$-extension $F_\infty/F$ of a number field $F$, to Iwasawa structural invariants $\la$ and $\mu$ attached to the inverse limit $X_\infty=\limpro X_n$. It relies on "good" descent properties satisfied by $X_n$. If $F$ is abelian and $F_\infty$ is cyclotomic it is known that the $p$-parts of the orders of the global units modulo circular units $U_n/C_n$ are asymptotically equivalent to the $p$-parts of the ideal class numbers. This suggests that these quotients $U_n/C_n$, so to speak unit class groups, satisfy also good descent properties. We show this directly, i.e. without using Iwasawa's Main Conjecture.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133