全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2005 

Two non-nilpotent linear transformations that satisfy the cubic $q$-Serre relations

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $K$ denote an algebraically closed field with characteristic 0, and let $q$ denote a nonzero scalar in $K$ that is not a root of unity. Let $A_q$ denote the unital associative $K$-algebra defined by generators $x,y$ and relations x^3y-[3]_q x^2yx +[3]_q xyx^2 -yx^3=0, y^3x-[3]_q y^2xy +[3]_q yxy^2 -xy^3=0, where $[3]_q = (q^3-q^{-3})/(q-q^{-1})$. We classify up to isomorphism the finite-dimensional irreducible $A_q$-modules on which neither of $x,y$ is nilpotent. We discuss how these modules are related to tridiagonal pairs.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133