全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  1999 

Immersed and virtually embedded pi_1-injective surfaces in graph manifolds

DOI: 10.2140/agt.2001.1.411

Full-Text   Cite this paper   Add to My Lib

Abstract:

We show that many 3-manifold groups have no nonabelian surface subgroups. For example, any link of an isolated complex surface singularity has this property. In fact, we determine the exact class of closed graph-manifolds which have no immersed pi_1-injective surface of negative Euler characteristic. We also determine the class of closed graph manifolds which have no finite cover containing an embedded such surface. This is a larger class. Thus, manifolds M^3 exist which have immersed pi_1-injective surfaces of negative Euler characteristic, but no such surface is virtually embedded (finitely covered by an embedded surface in some finite cover of M^3).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133