全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  1999 

Spin spaces, Lipschitz groups, and spinor bundles

Full-Text   Cite this paper   Add to My Lib

Abstract:

It is shown that every bundle $\varSigma\to M$ of complex spinor modules over the Clifford bundle $\Cl(g)$ of a Riemannian space $(M,g)$ with local model $(V,h)$ is associated with an lpin ("Lipschitz") structure on $M$, this being a reduction of the ${\Ort}(h)$-bundle of all orthonormal frames on M to the Lipschitz group $\Lpin(h)$ of all automorphisms of a suitably defined spin space. An explicit construction is given of the total space of the $\Lpin(h)$-bundle defining such a structure. If the dimension m of M is even, then the Lipschitz group coincides with the complex Clifford group and the lpin structure can be reduced to a pin$^{c}$ structure. If m=2n-1, then a spinor module $\varSigma$ on M is of the Cartan type: its fibres are 2^n-dimensional and decomposable at every point of M, but the homomorphism of bundles of algebras $\Cl(g)\to\End\varSigma$ globally decomposes if, and only if, M is orientable. Examples of such bundles are given. The topological condition for the existence of an lpin structure on an odd-dimensional Riemannian manifold is derived and illustrated by the example of a manifold admitting such a structure, but no pin^c structure.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133