全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2010 

De Sitter Breaking through Infrared Divergences

DOI: 10.1063/1.3448926

Full-Text   Cite this paper   Add to My Lib

Abstract:

Just because the propagator of some field obeys a de Sitter invariant equation does not mean it possesses a de Sitter invariant solution. The classic example is the propagator of a massless, minimally coupled scalar. We show that the same thing happens for massive scalars with $M_S^2 < 0$, and for massive transverse vectors with $M_V^2 \leq -2 (D-1) H^2$, where $D$ is the dimension of spacetime and $H$ is the Hubble parameter. Although all masses in these ranges give infrared divergent mode sums, using dimensional regularization (or any other analytic continuation technique) to define the mode sums leads to the incorrect conclusion that de Sitter invariant solutions exist except at discrete values of the masses.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133