|
Mathematics 2010
Generalized Ehrhart polynomialsDOI: 10.1090/S0002-9947-2011-05494-2 Abstract: Let $P$ be a polytope with rational vertices. A classical theorem of Ehrhart states that the number of lattice points in the dilations $P(n) = nP$ is a quasi-polynomial in $n$. We generalize this theorem by allowing the vertices of P(n) to be arbitrary rational functions in $n$. In this case we prove that the number of lattice points in P(n) is a quasi-polynomial for $n$ sufficiently large. Our work was motivated by a conjecture of Ehrhart on the number of solutions to parametrized linear Diophantine equations whose coefficients are polynomials in $n$, and we explain how these two problems are related.
|