全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2010 

Arithmetics in number systems with negative base

Full-Text   Cite this paper   Add to My Lib

Abstract:

We study the numeration system with negative basis, introduced by Ito and Sadahiro. We focus on arithmetic operations in the set ${\rm Fin}(-\beta)$ and $\Z_{-\beta}$ of numbers having finite resp. integer $(-\beta)$-expansions. We show that ${\rm Fin}(-\beta)$ is trivial if $\beta$ is smaller than the golden ratio $\frac12(1+\sqrt5)$. For $\beta\geq\frac12(1+\sqrt5)$ we prove that ${\rm Fin}(-\beta)$ is a ring, only if $\beta$ is a Pisot or Salem number with no negative conjugates. We prove the conjecture of Ito and Sadahiro that ${\rm Fin}(-\beta)$ is a ring if $\beta$ is a quadratic Pisot number with positive conjugate. For quadratic Pisot units we determine the number of fractional digits that may appear when adding or multiplying two $(-\beta)$-integers.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133