全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2010 

A characterization of Schauder frames which are near-Schauder bases

DOI: 10.1007/s00041-010-9126-5

Full-Text   Cite this paper   Add to My Lib

Abstract:

A basic problem of interest in connection with the study of Schauder frames in Banach spaces is that of characterizing those Schauder frames which can essentially be regarded as Schauder bases. In this paper, we give a solution to this problem using the notion of the minimal-associated sequence spaces and the minimal-associated reconstruction operators for Schauder frames. We prove that a Schauder frame is a near-Schauder basis if and only if the kernel of the minimal-associated reconstruction operator contains no copy of $c_0$. In particular, a Schauder frame of a Banach space with no copy of $c_0$ is a near-Schauder basis if and only if the minimal-associated sequence space contains no copy of $c_0$. In these cases, the minimal-associated reconstruction operator has a finite dimensional kernel and the dimension of the kernel is exactly the excess of the near-Schauder basis. Using these results, we make related applications on Besselian frames and near-Riesz bases.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133