|
Mathematics 2010
A criterion for homogeneous principal bundlesAbstract: We consider principal bundles over homogeneous spaces G/P, where P is a parabolic subgroup of a semisimple and simply connected complex linear algebraic group G. We prove that a holomorphic principal H--bundle, where H is a complex reductive group, is homogeneous if the adjoint vector bundle ad(E) is homogeneous. We also show that E is homogeneous if its associated vector bundle for any finite dimensional faithful H--module is homogeneous.
|