全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2010 

Higgs bundles over the good reduction of a quaternionic Shimura curve

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper is devoted to the study of the Higgs bundle associated with the universal abelian variety over the good reduction of a Shimura curve of PEL type. Due to the endomorphism structure, the Higgs bundle decomposes into the direct sum of Higgs subbundles of rank two. They are basically divided into two type: uniformizing type and unitary type. As the first application we obtain the mass formula counting the number of geometric points of the degeneracy locus in the Newton polygon stratification. We show that each Higgs subbundle is Higgs semistable. Furthermore, for each Higgs subbundle of unitary type, either it is strongly semistable, or its Frobenius pull-back of a suitable power achieves the upper bound of the instability. We describe the Simpson-Ogus-Vologodsky correspondence for the Higgs subbundles in terms of the classical Cartier descent.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133