|
Mathematics 2010
Nonlinear stability of viscous roll wavesAbstract: Extending results of Oh--Zumbrun and Johnson--Zumbrun for parabolic conservation laws, we show that spectral stability implies nonlinear stability for spatially periodic viscous roll wave solutions of the one-dimensional St. Venant equations for shallow water flow down an inclined ramp. The main new issues to be overcome are incomplete parabolicity and the nonconservative form of the equations, which leads to undifferentiated quadratic source terms that cannot be handled using the estimates of the conservative case. The first is resolved by treating the equations in the more favorable Lagrangian coordinates, for which one can obtain large-amplitude nonlinear damping estimates similar to those carried out by Mascia--Zumbrun in the related shock wave case, assuming only symmetrizability of the hyperbolic part. The second is resolved by the observation that, similarly as in the relaxation and detonation cases, sources occurring in nonconservative components experience greater than expected decay, comparable to that experienced by a differentiated source.
|