全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2009 

The area generating function for simple-2-column polyominoes with hexagonal cells

Full-Text   Cite this paper   Add to My Lib

Abstract:

Column-convex polygons were first counted by area several decades ago, and the result was found to be a simple, rational, generating function. In this chapter we generalize that result. Let a p-column polyomino be a polyomino whose columns can have 1, 2,..., p connected components. Then column-convex polygons are equivalent to 1-convex polyominoes. The area generating function of even the simplest generalization, namely to 2-column polyominoes, is unlikely to be solvable. We therefore define a class of polyominoes which interpolates between column-convex polygons and 2-column polyominoes. We derive the area generating function of that class, using an extension of an existing algorithm. The growth constant of the new class is greater than the growth constant of column-convex polygons. A rather tight lower bound on the growth constant complements a compelling numerical analysis.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133