全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2009 

Two Kazdan-Warner type identities for the renormalized volume coefficients and the Gauss-Bonnet curvatures of a Riemannian metric

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this note, we prove two Kazdan-Warner type identities involving $v^{(2k)}$, the renormalized volume coefficients of a Riemannian manifold $(M^n,g)$, and $G_{2r}$, the so-called Gauss-Bonnet curvature, and a conformal Killing vector field on $(M^n,g)$. In the case when the Riemannian manifold is locally conformally flat, $v^{(2k)}=(-2)^{-k}\sigma_k$, $G_{2r}(g)=\frac{4^r(n-r)!r!}{(n-2r)!}\sigma_r$, and our results reduce to earlier ones established by Viaclovsky and by the second author.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133