全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2009 

Octonions, E6, and Particle Physics

DOI: 10.1088/1742-6596/254/1/012005

Full-Text   Cite this paper   Add to My Lib

Abstract:

In 1934, Jordan et al. gave a necessary algebraic condition, the Jordan identity, for a sensible theory of quantum mechanics. All but one of the algebras that satisfy this condition can be described by Hermitian matrices over the complexes or quaternions. The remaining, exceptional Jordan algebra can be described by 3x3 Hermitian matrices over the octonions. We first review properties of the octonions and the exceptional Jordan algebra, including our previous work on the octonionic Jordan eigenvalue problem. We then examine a particular real, noncompact form of the Lie group E6, which preserves determinants in the exceptional Jordan algebra. Finally, we describe a possible symmetry-breaking scenario within E6: first choose one of the octonionic directions to be special, then choose one of the 2x2 submatrices inside the 3x3 matrices to be special. Making only these two choices, we are able to describe many properties of leptons in a natural way. We further speculate on the ways in which quarks might be similarly encoded.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133