|
Mathematics 2009
Harmonic measures for distributions with finite support on the mapping class group are singularAbstract: Kaimanovich and Masur showed that a random walk on the mapping class group for an initial distribution with finite first moment and whose support generates a non-elementary subgroup, converges almost surely to a point in the space PMF of projective measured foliations on the surface. This defines a harmonic measure on PMF. Here, we show that when the initial distribution has finite support, the corresponding harmonic measure is singular with respect to the natural Lebesgue measure on PMF.
|