全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2009 

Regularity in the local CR embedding problem

Full-Text   Cite this paper   Add to My Lib

Abstract:

We consider a formally integrable, strictly pseudoconvex CR manifold $M$ of hypersurface type, of dimension $2n-1\geq7$. Local CR, i.e. holomorphic, embeddings of $M$ are known to exist from the works of Kuranishi and Akahori. We address the problem of regularity of the embedding in standard H\"older spaces $C^{a}(M)$, $a\in\mathbf{R}$. If the structure of $M$ is of class $C^{m}$, $m\in\mathbf{Z}$, $4\leq m\leq\infty$, we construct a local CR embedding near each point of $M$. This embedding is of class $C^{a}$, for every $a$, $0\leq a < m+(1/2)$. Our method is based on Henkin's local homotopy formula for the embedded case, some very precise estimates for the solution operators in it, and a substantial modification of a previous Nash-Moser argument due to the second author.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133