全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2009 

Noether's problem for p_groups with a cyclic subgroup of index p^2

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $K$ be any field and $G$ be a finite group. Let $G$ act on the rational function field $K(x_g:g\in G)$ by $K$-automorphisms defined by $g\cdot x_h=x_{gh}$ for any $g,h\in G$. Noether's problem asks whether the fixed field $K(G)=K(x_g:g\in G)^G$ is rational (=purely transcendental) over $K$. We will prove that if $G$ is a non-abelian $p$-group of order $p^n$ ($n\ge 3$) containing a cyclic subgroup of index $p^2$ and $K$ is any field containing a primitive $p^{n-2}$-th root of unity, then $K(G)$ is rational over $K$. As a corollary, if $G$ is a non-abelian $p$-group of order $p^3$ and $K$ is a field containing a primitive $p$-th root of unity, then $K(G)$ is rational.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133