全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2009 

Approximating the moments of marginals of high-dimensional distributions

DOI: 10.1214/10-AOP589

Full-Text   Cite this paper   Add to My Lib

Abstract:

For probability distributions on $\mathbb{R}^n$, we study the optimal sample size N = N(n,p) that suffices to uniformly approximate the pth moments of all one-dimensional marginals. Under the assumption that the marginals have bounded 4p moments, we obtain the optimal bound $N=O(n^{p/2})$ for p > 2. This bound goes in the direction of bridging the two recent results: a theorem of Guedon and Rudelson [Adv. Math. 208 (2007) 798-823] which has an extra logarithmic factor in the sample size, and a result of Adamczak et al. [J. Amer. Math. Soc. 23 (2010) 535-561] which requires stronger subexponential moment assumptions.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133