全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2009 

Which Connected Spatial Networks on Random Points have Linear Route-Lengths?

Full-Text   Cite this paper   Add to My Lib

Abstract:

In a model of a connected network on random points in the plane, one expects that the mean length of the shortest route between vertices at distance $r$ apart should grow only as $O(r)$ as $r \to \infty$, but this is not always easy to verify. We give a general sufficient condition for such linearity, in the setting of a Poisson point process. In a $L \times L$ square, define a subnetwork $\GG_L$ to have the edges which are present regardless of the configuration outside the square; the condition is that the largest component of $\GG_L$ should contain a proportion $1 - o(1)$ of the vertices, as $L \to \infty$. The proof is by comparison with oriented percolation. We show that the general result applies to the relative neighborhood graph, and establishing the linearity property for this network immediately implies it for a large family of proximity graphs.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133