全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2009 

Simple Random Walk on Long Range Percolation Clusters II: Scaling Limits

Full-Text   Cite this paper   Add to My Lib

Abstract:

We study limit laws for simple random walks on supercritical long range percolation clusters on $\Z^d, d \geq 1$. For the long range percolation model, the probability that two vertices $x, y$ are connected behaves asymptotically as $\|x-y\|_2^{-s}$. When $s\in(d, d+1)$, we prove that the scaling limit of simple random walk on the infinite component converges to an $\alpha$-stable L\'evy process with $\alpha = s-d$ establishing a conjecture of Berger and Biskup. The convergence holds in both the quenched and annealed senses. In the case where $d=1$ and $s>2$ we show that the simple random walk converges to a Brownian motion. The proof combines heat kernel bounds from our companion paper, ergodic theory estimates and an involved coupling constructed through the exploration of a large number of walks on the cluster.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133