全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2009 

Random walks with occasionally modified transition probabilities

Full-Text   Cite this paper   Add to My Lib

Abstract:

We study recurrence properties and the validity of the (weak) law of large numbers for (discrete time) processes which, in the simplest case, are obtained from simple symmetric random walk on $\Z$ by modifying the distribution of a step from a fresh point. If the process is denoted as $\{S_n\}_{n \ge 0}$, then the conditional distribution of $S_{n+1} - S_n$ given the past through time $n$ is the distribution of a simple random walk step, provided $S_n$ is at a point which has been visited already at least once during $[0,n-1]$. Thus in this case $P\{S_{n+1}-S_n = \pm 1|S_\ell, \ell \le n\} = 1/2$. We denote this distribution by $P_1$. However, if $S_n$ is at a point which has not been visited before time $n$, then we take for the conditional distribution of $S_{n+1}-S_n$, given the past, some other distribution $P_2$. We want to decide in specific cases whether $S_n$ returns infinitely often to the origin and whether $(1/n)S_n \to 0$ in probability. Generalizations or variants of the $P_i$ and the rules for switching between the $P_i$ are also considered.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133