全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2009 

Near-ML Signal Detection in Large-Dimension Linear Vector Channels Using Reactive Tabu Search

Full-Text   Cite this paper   Add to My Lib

Abstract:

Low-complexity near-optimal signal detection in large dimensional communication systems is a challenge. In this paper, we present a reactive tabu search (RTS) algorithm, a heuristic based combinatorial optimization technique, to achieve low-complexity near-maximum likelihood (ML) signal detection in linear vector channels with large dimensions. Two practically important large-dimension linear vector channels are considered: i) multiple-input multiple-output (MIMO) channels with large number (tens) of transmit and receive antennas, and ii) severely delay-spread MIMO inter-symbol interference (ISI) channels with large number (tens to hundreds) of multipath components. These channels are of interest because the former offers the benefit of increased spectral efficiency (several tens of bps/Hz) and the latter offers the benefit of high time-diversity orders. Our simulation results show that, while algorithms including variants of sphere decoding do not scale well for large dimensions, the proposed RTS algorithm scales well for signal detection in large dimensions while achieving increasingly closer to ML performance for increasing number of dimensions.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133