|
Mathematics 2009
A polyhedral approach to computing border basesAbstract: Border bases can be considered to be the natural extension of Gr\"obner bases that have several advantages. Unfortunately, to date the classical border basis algorithm relies on (degree-compatible) term orderings and implicitly on reduced Gr\"obner bases. We adapt the classical border basis algorithm to allow for calculating border bases for arbitrary degree-compatible order ideals, which is \emph{independent} from term orderings. Moreover, the algorithm also supports calculating degree-compatible order ideals with \emph{preference} on contained elements, even though finding a preferred order ideal is NP-hard. Effectively we retain degree-compatibility only to successively extend our computation degree-by-degree. The adaptation is based on our polyhedral characterization: order ideals that support a border basis correspond one-to-one to integral points of the order ideal polytope. This establishes a crucial connection between the ideal and the combinatorial structure of the associated factor spaces.
|