|
Mathematics 2009
Adaptive FE-BE Coupling for Strongly Nonlinear Transmission Problems with Coulomb FrictionDOI: 10.1007/s00211-010-0337-0 Abstract: We analyze an adaptive finite element/boundary element procedure for scalar elastoplastic interface problems involving friction, where a nonlinear uniformly monotone operator such as the p-Laplacian is coupled to the linear Laplace equation on the exterior domain. The problem is reduced to a boundary/domain variational inequality, a discretized saddle point formulation of which is then solved using the Uzawa algorithm and adaptive mesh refinements based on a gradient recovery scheme. The Galerkin approximations are shown to converge to the unique solution of the variational problem in a suitable product of L^p- and L^2-Sobolev spaces.
|