全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2009 

On a spectral sequence for twisted cohomologies

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let ($\Omega^{\ast}(M), d$) be the de Rham cochain complex for a smooth compact closed manifolds $M$ of dimension $n$. For an odd-degree closed form $H$, there are a twisted de Rham cochain complex $(\Omega^{\ast}(M), d+H_\wedge)$ and its associated twisted de Rham cohomology $H^*(M,H)$. We show that there exists a spectral sequence $\{E^{p, q}_r, d_r\}$ derived from the filtration $F_p(\Omega^{\ast}(M))=\bigoplus_{i\geq p}\Omega^i(M)$ of $\Omega^{\ast}(M)$, which converges to the twisted de Rham cohomology $H^*(M,H)$. We also show that the differentials in the spectral sequence can be given in terms of cup products and specific elements of Massey products as well, which generalizes a result of Atiyah and Segal. Some results about the indeterminacy of differentials are also given in this paper.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133