全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2009 

Cosmetic Surgery in Integral Homology $L$-Spaces

DOI: 10.2140/gt.2011.15.1157

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $K$ be a non-trivial knot in $S^3$, and let $r$ and $r'$ be two distinct rational numbers of same sign, allowing $r$ to be infinite; we prove that there is no orientation-preserving homeomorphism between the manifolds $S^3_r(K)$ and $S^3_{r'}(K)$. We further generalize this uniqueness result to knots in arbitrary integral homology L-spaces.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133