全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2009 

Binomial skew polynomial rings, Artin-Schelter regularity, and binomial solutions of the Yang-Baxter equation

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $k$ be a field and $X$ be a set of $n$ elements. We introduce and study a class of quadratic $k$-algebras called \emph{quantum binomial algebras}. Our main result shows that such an algebra $A$ defines a solution of the classical Yang-Baxter equation (YBE), if and only if its Koszul dual $A^{!}$ is Frobenius of dimension $n,$ with a \emph{regular socle} and for each $x,y \in X $ an equality of the type $xyy=\alpha zzt,$ where $\alpha \in k \setminus\{0\},$ and $z,t \in X$ is satisfied in $A$. We prove the equivalence of the notions \emph{a binomial skew polynomial ring} and \emph{a binomial solution of YBE}. This implies that the Yang-Baxter algebra of such a solution is of Poincar\'{e}-Birkhoff-Witt type, and possesses a number of other nice properties such as being Koszul, Noetherian, and an Artin-Schelter regular domain.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133