全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2009 

Refined class number formulas and Kolyvagin systems

DOI: 10.1112/S0010437X1000494X

Full-Text   Cite this paper   Add to My Lib

Abstract:

We use the theory of Kolyvagin systems to prove (most of) a refined class number formula conjectured by Darmon. We show that for every odd prime $p$, each side of Darmon's conjectured formula (indexed by positive integers $n$) is "almost" a $p$-adic Kolyvagin system as $n$ varies. Using the fact that the space of Kolyvagin systems is free of rank one over $\mathbf{Z}_p$, we show that Darmon's formula for arbitrary $n$ follows from the case $n=1$, which in turn follows from classical formulas.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133