全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2009 

Bridge position and the representativity of spatial graphs

Full-Text   Cite this paper   Add to My Lib

Abstract:

First, we extend Otal's result for the trivial knot to trivial spatial graphs, namely, we show that for any bridge tangle decomposing sphere $S^2$ for a trivial spatial graph $\Gamma$, there exists a 2-sphere $F$ such that $F$ contains $\Gamma$ and $F$ intersects $S^2$ in a single loop. Next, we introduce two invariants for spatial graphs. As a generalization of the bridge number for knots, we define the {\em bridge string number} $bs(\Gamma)$ of a spatial graph $\Gamma$ as the minimal number of $|\Gamma\cap S^2|$ for all bridge tangle decomposing sphere $S^2$. As a spatial version of the representativity for a graph embedded in a surface, we define the {\em representativity} of a non-trivial spatial graph $\Gamma$ as \[ r(\Gamma)=\max_{F\in\mathcal{F}} \min_{D\in\mathcal{D}_F} |\partial D\cap \Gamma|, \] where $\mathcal{F}$ is the set of all closed surfaces containing $\Gamma$ and $\mathcal{D}_F$ is the set of all compressing disks for $F$ in $S^3$. Then we show that for a non-trivial spatial graph $\Gamma$, \[ \displaystyle r(\Gamma)\le \frac{bs(\Gamma)}{2}. \] In particular, if $\Gamma$ is a knot, then $r(\Gamma)\le b(\Gamma)$, where $b(\Gamma)$ denotes the bridge number. This generalizes Schubert's result on torus knots.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133